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Monte Carlo fixed scale transformation for nonlocal fractal growth models
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The fixed scale transformation~FST! is a theoretical framework developed for the evaluation of scaling
dimensions in a vast class of complex systems showing fractal geometric correlations. For models with long
range interactions, such as Laplacian growth models, the identification by analytical methods of the transfor-
mation’s basic elements is a very difficult task. Here we present a Monte Carlo renormalization approach
which allows the direct numerical evaluation of the FST transfer matrix, overcoming the usual problems of
analytical and numerical treatments. The scheme is explicitly applied to the diffusion limited aggregation case
where a scale invariant regime is identified and the fractal dimension is computed. The Monte Carlo FST
represents an alternative tool which can be easily generalized to other fractal growth models with nonlocal
interactions.@S1063-651X~96!02512-3#

PACS number~s!: 64.60.Ak, 05.401j, 02.70.Lq
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The fixed scale transformation~FST! is a powerful ana-
lytical tool for the calculation of the fractal dimension of
variety of equilibrium and nonequilibrium models@1#. The
practical implementation of this scheme is rather simple
standard critical phenomena, such as percolation, which
governed by local interactions. On the contrary, for frac
growth problems like diffusion limited aggregation~DLA !
@2,3#, both the matrix elements and the scale invariant
namics analytical calculations represent a basic problem.
DLA the FST calculation has been carried out in its f
extent, giving results in very good agreement with numeri
simulations@1#. In general, however, given a growth mod
with long range interactions, the analytical evaluation of
scale invariant matrix elements is a formidable task@4–6#.

For this reason, we show here a Monte Carlo~MC! pro-
cedure which deals directly with the FST transfer matrix
ements. We develop a procedure for the numerical calc
tion of the scale invariant FST matrix elements, which fina
yields the calculation of the fractal dimension. This Mon
Carlo FST ~MCFST! scheme allows us to overcome th
problems arising in the analytical evaluation of the scale
variant dynamics. On the other hand, the Monte Carlo par
the method deals with local configuration calculations avo
ing the usual numerical uncertainties given by the large s
corrections to scaling present in these models.

We apply explicitly this scheme to the DLA model. I
order to do that we used numerically generated DLA clus
with size ranging fromL5128 toL5512. On these cluster
we numerically calculated the FST matrix elements for d
ferent coarse graining sizes. We find that the FST ma
elements approach a scale invariant regime. In this scale
variant regime we can easily compute the fractal dimens
for DLA clusters, obtaining results in good agreement w
the expected value. The MCFST is therefore a good alte
tive calculation scheme for models in which an analyti
computation of the scale invariant dynamics is not
achieved.

The FST approach starts with the full description of t
nearest-neighbor pair correlations, and then uses the s
551063-651X/97/55~1!/1170~4!/$10.00
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invariant dynamics to extract from them the scaling prop
ties characterizing correlations at arbitrary scales. Let us
discuss the calculation at a given scale. In this respect
convenient to consider the transverse correlations along
intersections of the structure with a line perpendicular to
local growth direction. In two dimensions, since we are
terested in conditional probabilities, there are two types
pair configurations in the asymptotic structure. A configu
tion of type 1 consisting of an occupied site and an em
one, and a type 2 with both sites occupied. The occurre
probabilities of these configurations are defined asC1 and
C2, respectively. In order to compute these probabilities
consider the probabilitiesMi , j that a pair configuration of
type i is followed in the growth direction by a configuratio
of type j . These conditional probabilities leads to the follow
ing transfer matrix problems:

C1
k115M1,1

k C1
k1M2,1

k C2
k

C2
k115M1,2

k C1
k1M2,2

k C2
k,

~1!

where the indexk refers to different intersections of th
structure. This is the FST matrix in its general formulatio
Because of the translational invariance of the structures c
sidered@7#, the transfer matrix fixed point (C1* ,C2* ) charac-
terizes nearest-neighbor correlations at the same scal
which the dynamics used in the calculation is referred. T
matrix elementsMi , j can be computed by lattice path inte
grals over the possible growth processes that correspon
the configurationsi and j . Therefore one must, in principle
consider all the possible series of growth processes wit
statistical weight given by the growth rule of the model co
sidered. The general scheme for the analytical calculatio
the matrix elements is given in Ref.@1#.

The above framework is very powerful because the use
the scale invariant dynamics in the FST calculation allows
to interpret sites as coarse grained cells. Therefore the fi
point probabilities (C1* ,C2* ) characterize geometrical corre
lations for coarse grained cells of any size. This correspo
1170 © 1997 The American Physical Society
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to extract the fractal dimension from the large scale limit
the pair correlation function which is described by neare
neighbor pair correlation of very large cells. In such a situ
tion the probability distribution (C1* ,C2* ) can be related to
the fractal dimensionDf of the structure@1#, finally obtain-
ing

Df511

lnS 2M1,21M2,1

M1,21M2,1
D

ln2
. ~2!

The scale invariant dynamical growth rules are therefore n
essary for a complete definition of the FST approach. T
knowledge of this scale invariant dynamics is also one of
key points in the understanding of why growth models g
rise to fractal structures. For DLA we are in the position
understand some general properties of the scale invarian
namics@4#. In addition it is possible to show with renorma
ization methods that the scale invariant dynamics is v
close to the microscopic one from which the model is d
fined @5#. However a general understanding of the scale
variant dynamical regime for nonlocal growth models h
not yet been achieved. In fact, for these models, the ma
elements calculation as well as the analytical form of
asymptotic dynamics, are very complex problems. By c
trast, the standard MC approach of directly simulating
model of interest is very easy to apply and gives good res
for the properties of finite systems@3#. However, when an
attempt is made to calculate the properties of an infinite s
tem, it runs into problems of finite size effects. In fact, t
long range correlated dynamics in space and time of fra
growth problems, makes that scaling corrections decay
tremely slow and in a nontrivial way.

To pursue a practical way of avoiding the difficulties
both the FST analytical calculation and the MC compu
simulations, we combine the two methods to obtain a gen
and easily implemented computational scheme. We us
MC simulation to generate several cluster realizations of
growth model considered. Since the explicit configuratio
are stored in the computer, any function of interest can
calculated from these clusters. We then focus directly on
definition of the FST matrix elements. We perform a b
covering of the cluster with boxes of sizel 3l . At this point
an opportune spanning condition or majority rule is chos
in order to decide which boxes can be considered occu
by the cluster. This step corresponds to define a coarse g
ing with scale factorl . The next step is the study of inte
sections perpendicular to the growth direction. We consi
pairs ofl 3l boxes on consecutive intersections. As sho
above there are two types of pair configurations: a confi
ration of type 1 consisting of an occupied site and an em
one, and a type 2 with both sites occupied. The MCF
matrix elementsMi , j (l ) are thus given by the normalize
occurrence of local configurations in which a pair configu
tion of type i is followed on the next intersection by a pa
configuration of typej . Given a MC simulation of sizeL, we
can define on each intersection (L/2l ) pairs configurations
of boxes, and we can look at (L/2l ) pairs of consecutive
intersections. This givesN;(L/2l )2 local configurations for
the matrix elements statistics. We also have to look at
scaling of the FST matrix by performing different coar
f
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graining steps for different box sizesl . For self-similar sys-
tems the matrix elements have to approach a scale inva
regime in the range 1!l !L; i.e.,Mi , j becomes indepen
dent from l . This is the regime in which the FST calcula
tions give the right value for the fractal dimension.

The MCFST scheme defined above does not involve
truncations usually involved in analytical calculations, and
is implicitly defined by the correct scale invariant dynamic
At the same time, the MC computational part is focus
directly onto the local configurations of interest, avoiding t
errors deriving by extrapolating large scale behavior. In
MCFST there are no approximations other than the coa
graining definition and the statistical uncertainty implicit
using finite cluster simulations. It is, however, worth stre
ing that there are several technical aspects of MC comp
simulations that are extremely important in obtaining relia
numbers. Binder and Herrmann@8# have provided a detailed
discussion of these essential points. The strategy we outl
retains also the advantage of being applicable to a large c
of fractal growth models as well as equilibrium models. It
also interesting to note that a preliminary attempt to use s
a technique can be found in@9#, where a similar approach
was used on percolation clusters.

To illustrate how MCFST calculations work in practic
we shall discuss the explicit application to the DLA model
two dimensions. DLA has been extensively investigated b
numerically and theoretically@3# in the last decade. In addi
tion, the analytical FST approach has been applied in its
extension to the two dimensional case@1,5,14#. This allows
us to compare the results obtained in the present MCF
study with those obtained with other methods.

The basic DLA model is defined on a two dimension
square lattice@2#. The construction of DLA clusters begin
with a particle at a random location on a ‘‘birth’’ region a
some distance from the existing cluster. The new part
undergoes a Brownian motion until it comes in contact w
the cluster, at which point it becomes permanently stuck
new particle is then added at random and the process co
ues. One can define the growth process starting from a b
line ~the seed! and proceeding towards a faraway upp
boundary line. Since, in practice, the length of the base
is finite and one uses periodic boundary conditions, topolo
cally the growth occurs on the surface of a cylinder@10#. For
this geometry the initial stage of growth~the scaling regime!
shows the development of larger and larger correlatio
When correlations reach the size of the basis the cluster
ters the ‘‘steady-state’’ regime in which fractal properties a
asymptotically defined. Here we use on-lattice cylindric
clusters with basis size ranging fromL5128 to L5512.
Each cluster was grown up to a heighth54L to obtain a
better statistics of the steady-state region. For each sys
size we averaged data over 10 realizations.

The first step of the MCFST consists in the implemen
tion of a coarse graining procedure which defines the oc
pied boxes of sizel . By executing a covering of the DLA
clusters we must in fact choose a criterion to decide whe
cell can be considered occupied or not. A crucial point in
renormalization of growing structures is the preservation
the connectivity. In fact, at a generic scale, we have a gro
event only if a cell is completely spanned by the growi
structure. A similar problem is found in percolation, whe
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connectivity plays a fundamental role because it determ
the critical state. We therefore consider only those c
spanned either from left to right or top to bottom, or ce
which are connected to a spanned one. This spanning
implies that only structures extending over the size of
rescaling length contribute to the renormalized clus
Moreover, it ensures the connectivity properties of the cl
ter in the renormalization procedure.

To check the spanning of a cell of sizel we used a
pattern-recognition algorithm, which looks for the bran
connecting two opposite sides of the cell. The basic idea
this algorithm is to assign a label, a ‘‘color,’’ to the points
the cell, in such a way as points belonging to the sa
branch of the structure have the same color, each bra
being characterized by a different color. To do so in o
MCFST approach, we used the Hoshen-Kopelman algori
@11,12# which gives to all connected sites in a cell the sa
label P ~or ‘‘color’’ !. After having labeled all disconnecte
branches in a cell, it is sufficient to check if the same la
appears in both the two sides of the cell, in order that
spanning condition be satisfied. In Figs. 1~a! and ~b! we
show two typical situations. In Fig. 1~a! we have two neares
neighbor 434 boxes; the lower one is spanned by a co
nected path, while the other is connected to the spanned
The two boxes both renormalize in a site belonging to
structure. In Fig. 1~b!, instead, the lower box is spanned, a
the upper box is neither spanned nor connected to the lo
one. So, the upper box renormalizes in an occupied site
the other renormalizes in an empty site.

After the coarse grained clusters at scalel are defined,
one computes the FST matrix elementsMi , j (l ) as the nor-
malized number of configurations of typei on the first inter-
section followed by a configuration of typej . We ignore
configurations where pairs of white sites or diagonally co
nected black sites appear. The analysis is repeated fo
intersections on the structure, different cluster sizesL and
different coarse graining scalesl . In Fig. 2 the FST matrix
elements behavior is shown. In order to have insight on
scale invariant regime we plot the matrix elements as a fu
tion of the normalized scalel /L. This allows the comparison
of numerical data from clusters of a different size, dropp
out the finite size effects due to the lower and upper cutof
simulations. The figures show the matrix elements in the
range of thel /L values. The scale invariant regime is in th

FIG. 1. Rescaling with the spanning rule.~a! The lower box is
spanned, and the upper one is connected to the lower one. The
boxes both renormalize in an occupied site.~b! The lower box is
spanned~black!, while the upper one is neither spanned nor co
nected to the other one~white!.
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region 1/L!l /L!1 @13#. We therefore consider only value
of l /L which are at least an order of magnitude inside
above window.

For the smaller simulation (L5128) the scale invarian
regime is not well defined except for a few points. For t
largest size (L5512) we have a significant plateau over
order of magnitude or more. This plateau identifies the sc
invariant regime for the FST matrix elements. It is wort
while to remark that, independently of the size of the sim
lation, the matrix elements have a very good collapse on
same numerical values. In addition, if a larger cluster size
used, the matrix elements behavior is more stable. An
trapolation ofM1,2 andM2,1 in the scale invariant regime
gives the following values: M1,2.0.5560.01 and
M2,1.0.2560.01. By using these numerical values
Eq.~2! to estimate the fractal dimension of DLA, we g
Df.1.75, in good agreement with the numerical val
Df.1.65 obtained with a box-counting procedure@10#. The
results can also be improved by using a refined version of
method such as more complicated coarse-graining pro
dures or larger cluster realizations. In fact, finite size effec
as well as unavoidable approximations introduced in the
covering algorithm, could affect the MCFST results.

It is interesting to compare the MCFST results with t
analytical FST values@1,14#. The MCFST method gives a
convolution of the FST matrix elements for the various po
sible boundary conditions. So, we have to consider the F

wo

-

FIG. 2. Behavior of the matrix elementsM1,2(l /L) and
M2,1(l /L) vs the ‘‘normalized’’ rescaling lengthl /L, for different
sizesL5128,256,512 of the system. A scale invariant regime
pears over an order of magnitude ofl /L values.
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analytical results obtained in the open-closed boundary c
ditions approximation. The expression for theMi , j in the
open-closed approximation is@14#

Mi , j5Mi , j
op~12P0!1Mi , j

cl P0 , ~3!

whereMi , j
op andMi , j

cl are the FST matrix elements, respe
tively, in open and closed boundary conditions andP0 is the
probability to have closed boundary conditions. In this ca
the analytical values ofM1,2 and ofM2,1 are in a range of
10–15 % from the numerical values. In particular our M
estimation forM2,1 is quite lower than the analytical resul
However, the analytical results are only approximated on
In order to get the ‘‘exact’’ values of the matrix elements o
should consider the whole path integral series for the ma
elements and to implement the FST analytical computa
for all the possible boundary conditions. This would lead t
lower value ofM2,1 and to a greater value ofM1,2, reducing
the discrepancy with numerical values. Nevertheless,
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comparison of MCFST with the analytical FST tells us th
even the crude open-closed approximations is a reason
analytical truncation which gives very good results.

In summary, we have presented a Monte Carlo proced
which evaluates explicitly the FST matrix elements, allowi
the computation of scaling exponents. For the DLA mod
we have shown the actual implementation of the MCF
scheme. The behavior of the matrix elements has been s
ied and a scale invariant regime is found. In this regime
results obtained are in good agreement with the analyt
ones and previous numerical results. This scheme overco
the problems arising in the analytical evaluation of the sc
invariant dynamics, and is particularly useful for the study
models with long range interactions. The MCFST seems
be a general method and a good alternative calcula
scheme that can be easily extended to other models
nonlocal dynamics, like invasion percolation@15# and the
quenched dielectric breakdown model@16#.
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