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The fixed scale transformatioffrST) is a theoretical framework developed for the evaluation of scaling
dimensions in a vast class of complex systems showing fractal geometric correlations. For models with long
range interactions, such as Laplacian growth models, the identification by analytical methods of the transfor-
mation’s basic elements is a very difficult task. Here we present a Monte Carlo renormalization approach
which allows the direct numerical evaluation of the FST transfer matrix, overcoming the usual problems of
analytical and numerical treatments. The scheme is explicitly applied to the diffusion limited aggregation case
where a scale invariant regime is identified and the fractal dimension is computed. The Monte Carlo FST
represents an alternative tool which can be easily generalized to other fractal growth models with nonlocal
interactions[S1063-651X96)02512-3

PACS numbe(s): 64.60.Ak, 05.4@&j, 02.70.Lq

The fixed scale transformatiofST) is a powerful ana- invariant dynamics to extract from them the scaling proper-
lytical tool for the calculation of the fractal dimension of a ties characterizing correlations at arbitrary scales. Let us first
variety of equilibrium and nonequilibrium mode4]. The  discuss the calculation at a given scale. In this respect it is
practical implementation of this scheme is rather simple inconvenient to consider the transverse correlations along the
standard critical phenomena, such as percolation, which afgtersections of the structure with a line perpendicular to the
governed by local interactions. On the contrary, for fractallocal growth direction. In two dimensions, since we are in-
growth problems like diffusion limited aggregatig®LA)  terested in conditional probabilities, there are two types of
[2,3], both the matrix elements and the scale invariant dy{air configurations in the asymptotic structure. A configura-
namics analytical calculations represent a basic problem. Fdion of type 1 consisting of an occupied site and an empty
DLA the FST calculation has been carried out in its full one, and a type 2 with both sites occupied. The occurrence
extent, giving results in very good agreement with numericaprobabilities of these configurations are definedCgsand
simulations[1]. In general, however, given a growth model C,, respectively. In order to compute these probabilities we
with long range interactions, the analytical evaluation of theconsider the probabilitie/; ; that a pair configuration of
scale invariant matrix elements is a formidable tpék6). typei is followed in the growth direction by a configuration

For this reason, we show here a Monte CAMC) pro-  of typej. These conditional probabilities leads to the follow-
cedure which deals directly with the FST transfer matrix el-ing transfer matrix problems:
ements. We develop a procedure for the numerical calcula-

tion of the scale invariant FST matrix elements, which finally Ci"t=M{ ,Ci+M5 Ch
yields the calculation of the fractal dimension. This Monte (1)
Carlo FST (MCFST) scheme allows us to overcome the C§+1=M'{'2C‘§+ M;ZC",

problems arising in the analytical evaluation of the scale in-

variant dynamics. On the other hand, the Monte Carlo part oivhere the indexk refers to different intersections of the
the method deals with local configuration calculations avoid-structure. This is the FST matrix in its general formulation.
ing the usual numerical uncertainties given by the large scalBecause of the translational invariance of the structures con-
corrections to scaling present in these models. sidered(7], the transfer matrix fixed pointQt ,C3) charac-

We apply explicitly this scheme to the DLA model. In terizes nearest-neighbor correlations at the same scale to
order to do that we used numerically generated DLA clusterghich the dynamics used in the calculation is referred. The
with size ranging fronL. =128 toL =512. On these clusters Mmatrix elementsM; ; can be computed by lattice path inte-
we numerically calculated the FST matrix elements for dif-grals over the possible growth processes that correspond to
ferent coarse graining sizes. We find that the FST matrithe configurations andj. Therefore one must, in principle,
elements approach a scale invariant regime. In this scale irgonsider all the possible series of growth processes with a
variant regime we can easily compute the fractal dimensiosstatistical weight given by the growth rule of the model con-
for DLA clusters, obtaining results in good agreement withsidered. The general scheme for the analytical calculation of
the expected value. The MCFST is therefore a good alterndghe matrix elements is given in RefL].
tive calculation scheme for models in which an analytical The above framework is very powerful because the use of
computation of the scale invariant dynamics is not yetthe scale invariant dynamics in the FST calculation allows us
achieved. to interpret sites as coarse grained cells. Therefore the fixed

The FST approach starts with the full description of thepoint probabilities C} ,C3) characterize geometrical corre-
nearest-neighbor pair correlations, and then uses the scdkions for coarse grained cells of any size. This corresponds
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to extract the fractal dimension from the large scale limit ofgraining steps for different box size& For self-similar sys-

the pair correlation function which is described by nearesttems the matrix elements have to approach a scale invariant
neighbor pair correlation of very Iarge cells. In such a situayegime in the range €/<L; i.e., M, ; becomes indepen-
tion the probability distribution €1 ,C3) can be related t0  gent from /. This is the regime in which the FST calcula-
fche fractal dimensio; of the structure[l] finally obtain-  tjgns give the right value for the fractal dimension.

Ing The MCFST scheme defined above does not involve the
truncations usually involved in analytical calculations, and it

(M) is implicitly defined by the correct scale invariant dynamics.

Myo+Msy; At the same time, the MC computational part is focused

De=1+ In2 ' 2 directly onto the local configurations of interest, avoiding the

errors deriving by extrapolating large scale behavior. In the

The scale invariant dynamical growth rules are therefore neaviICFST there are no approximations other than the coarse
essary for a complete definition of the FST approach. Theyraining definition and the statistical uncertainty implicit in
knowledge of this scale invariant dynamics is also one of theusing finite cluster simulations. It is, however, worth stress-
key points in the understanding of why growth models giveing that there are several technical aspects of MC computer
rise to fractal structures. For DLA we are in the position tosimulations that are extremely important in obtaining reliable
understand some general properties of the scale invariant dyjumbers. Binder and Herrmaii@] have provided a detailed
namics[4]. In addition it is possible to show with renormal- discussion of these essential points. The strategy we outlined
ization methods that the scale invariant dynamics is veryetains also the advantage of being applicable to a large class
close to the microscopic one from which the model is de-of fractal growth models as well as equilibrium models. It is
fined[5]. However a general understanding of the scale inalso interesting to note that a preliminary attempt to use such
variant dynamical regime for nonlocal growth models hasa technique can be found [®], where a similar approach
not yet been achieved. In fact, for these models, the matriyvas used on percolation clusters.
elements calculation as well as the analytical form of the To illustrate how MCFST calculations work in practice,
asymptotic dynamics, are very complex problems. By conwe shall discuss the explicit application to the DLA model in
trast, the standard MC approach of directly simulating thewo dimensions. DLA has been extensively investigated both
model of interest is very easy to apply and gives good resultaumerically and theoreticallj3] in the last decade. In addi-
for the properties of finite systenj8]. However, when an tion, the analytical FST approach has been applied in its full
attempt is made to calculate the properties of an infinite sysextension to the two dimensional cgde5,14. This allows
tem, it runs into problems of finite size effects. In fact, theus to compare the results obtained in the present MCFST
long range correlated dynamics in space and time of fractaltudy with those obtained with other methods.
growth problems, makes that scaling corrections decay ex- The basic DLA model is defined on a two dimensional
tremely slow and in a nontrivial way. square latticd2]. The construction of DLA clusters begins

To pursue a practical way of avoiding the difficulties of with a particle at a random location on a “birth” region at
both the FST analytical calculation and the MC computersome distance from the existing cluster. The new particle
simulations, we combine the two methods to obtain a generalndergoes a Brownian motion until it comes in contact with
and easily implemented computational scheme. We use e cluster, at which point it becomes permanently stuck. A
MC simulation to generate several cluster realizations of theew particle is then added at random and the process contin-
growth model considered. Since the explicit configurationsues. One can define the growth process starting from a base
are stored in the computer, any function of interest can béine (the seeyl and proceeding towards a faraway upper
calculated from these clusters. We then focus directly on théoundary line. Since, in practice, the length of the base line
definition of the FST matrix elements. We perform a boxis finite and one uses periodic boundary conditions, topologi-
covering of the cluster with boxes of sizex /. At this point  cally the growth occurs on the surface of a cylinfted]. For
an opportune spanning condition or majority rule is choserthis geometry the initial stage of growtthe scaling regime
in order to decide which boxes can be considered occupieshows the development of larger and larger correlations.
by the cluster. This step corresponds to define a coarse grailvhen correlations reach the size of the basis the cluster en-
ing with scale factor”. The next step is the study of inter- ters the “steady-state” regime in which fractal properties are
sections perpendicular to the growth direction. We consideasymptotically defined. Here we use on-lattice cylindrical
pairs of /X /" boxes on consecutive intersections. As showrclusters with basis size ranging fromn=128 to L =512.
above there are two types of pair configurations: a configuEach cluster was grown up to a heigit4L to obtain a
ration of type 1 consisting of an occupied site and an emptyetter statistics of the steady-state region. For each system
one, and a type 2 with both sites occupied. The MCFSTsize we averaged data over 10 realizations.
matrix elements\M; ;(/) are thus given by the normalized  The first step of the MCFST consists in the implementa-
occurrence of local configurations in which a pair configura-tion of a coarse graining procedure which defines the occu-
tion of typei is followed on the next intersection by a pair pied boxes of size”. By executing a covering of the DLA
configuration of typg. Given a MC simulation of size, we  clusters we must in fact choose a criterion to decide when a
can define on each intersectiobh/2/") pairs configurations cell can be considered occupied or not. A crucial point in the
of boxes, and we can look at.{2/) pairs of consecutive renormalization of growing structures is the preservation of
intersections. This gived~ (L/2/)? local configurations for  the connectivity. In fact, at a generic scale, we have a growth
the matrix elements statistics. We also have to look at thevent only if a cell is completely spanned by the growing
scaling of the FST matrix by performing different coarsestructure. A similar problem is found in percolation, where
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FIG. 1. Rescaling with the spanning rul@) The lower box is 02 -
spanned, and the upper one is connected to the lower one. The two
boxes both renormalize in an occupied sii®. The lower box is 0.0 M . -
spannedblack), while the upper one is neither spanned nor con- 0.01 0.10
nected to the other on@vhite). VL
1.0
connectivity plays a fundamental role because it determines i
the critical state. We therefore consider only those cells 08
spanned either from left to right or top to bottom, or cells A e
which are connected to a spanned one. This spanning rule 0.6 - G- - -aL=512

rescaling length contribute to the renormalized cluster.

Moreover, it ensures the connectivity properties of the clus-

ter in the renormalization procedure. e e e
To check the spanning of a cell of sizé we used a

pattern-recognition algorithm, which looks for the branch

connecting two opposite sides of the cell. The basic idea of .01 T T 00

this algorithm is to assign a label, a “color,” to the points in In

the cell, in such a way as points belonging to the same

branch of the structure have the same color, each branch g 2 Behavior of the matrix elementsA; (//L) and

being characterized by a different color. To do so0 in oury, (//L) vs the “normalized” rescaling lengtH/L, for different

MCEFST approach, we used the Hoshen-Kopelman algorithrgizesL = 128,256,512 of the system. A scale invariant regime ap-

[11,12 which gives to all connected sites in a cell the samepears over an order of magnitude 6fL values.

label P (or “color” ). After having labeled all disconnected

branches in a cell, it is sufficient to check if the same labefegion 1L<//L<1[13]. We therefore consider only values

appears in both the two sides of the cell, in order that th@f //L which are at least an order of magnitude inside the

spanning condition be satisfied. In Figgaland (b) we aPove window. _ _ S

show two typical situations. In Fig.(d we have two nearest  For the smaller simulationL(=128) the scale invariant

neighbor 4<4 boxes; the lower one is spanned by a con-regime is not well defined except for a few points. For the

nected path, while the other is connected to the spanned Onlg_rgest Slz€ l(%512) we have a S|gn|f|can_t plat_e_au Over an
The two boxes both renormalize in a site belonging to theorder of magnitude or more. This plateau identifies the scale

structure. In Fig. (b), instead, the lower box is spanned andlnvariant regime for the FST matrix elements. It is worth-
' 9- ), ' P ' while to remark that, independently of the size of the simu-
the upper box is neither spanned nor connected to the low

So. th b i . iod sit htion, the matrix elements have a very good collapse on the
Oneé. S0, the upper box renormalizes In an occupied Sité andy me nymerical values. In addition, if a larger cluster size is
the other renormalizes in an empty site.

k ] used, the matrix elements behavior is more stable. An ex-
After the coarse grained _clusters at scalare defined, trapolation of M, , and M, in the scale invariant regime
one computes the FST matrix element (/) as the nor- gives the folléwing values: M, ,~055+0.01 and
malized number of configurations of typen the first inter- A, ~0.25+0.01. By using these numerical values in
section followed by a configuration of type We ignore  Eq(2) to estimate the fractal dimension of DLA, we get
configurations where pairs of white sites or diagonally conD;=1.75, in good agreement with the numerical value
nected black sites appear. The analysis is repeated for afj;~1.65 obtained with a box-counting proced(il®]. The
intersections on the structure, different cluster siceand  results can also be improved by using a refined version of the
different coarse graining scales In Fig. 2 the FST matrix method such as more complicated coarse-graining proce-
elements behavior is shown. In order to have insight on thelures or larger cluster realizations. In fact, finite size effects,
scale invariant regime we plot the matrix elements as a funcas well as unavoidable approximations introduced in the box
tion of the normalized scalé/L. This allows the comparison covering algorithm, could affect the MCFST results.
of numerical data from clusters of a different size, dropping It is interesting to compare the MCFST results with the
out the finite size effects due to the lower and upper cutoff ofanalytical FST value$1,14]. The MCFST method gives a
simulations. The figures show the matrix elements in the fuliconvolution of the FST matrix elements for the various pos-
range of the//L values. The scale invariant regime is in the sible boundary conditions. So, we have to consider the FST

implies that only structures extending over the size of the S
EN

00 .
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analytical results obtained in the open-closed boundary corcomparison of MCFST with the analytical FST tells us that
ditions approximation. The expression for the ; in the  even the crude open-closed approximations is a reasonable
open-closed approximation 4] analytical truncation which gives very good results.

In summary, we have presented a Monte Carlo procedure
which evaluates explicitly the FST matrix elements, allowing
_ the computation of scaling exponents. For the DLA model
o we have shown the actual implementation of the MCFST

tively, in open and closed boundary conditions &hgis the . .
probability to have closed boundary conditions. In this case?Cheme' The behavior of the matrix elements has been stud-

the analytical values okl , and of M, are in a range of ied and a sc_ale invari_ant regime is found. Ir_1 this regime 'Fhe
10-15 % from the numerical values. In particular our Mc results obtained are in good agreement with the analytical
estimation forM, . is quite lower than the analytical result. ©N€s and previous numerical results. This scheme overcomes
However, the analytical results are only approximated onedhe problems arising in the analytical evaluation of the scale
In order to get the “exact” values of the matrix elements oneinvariant dynamics, and is particularly useful for the study of
should consider the whole path integral series for the matrixnodels with long range interactions. The MCFST seems to
elements and to implement the FST analytical computatiope a general method and a good alternative calculation
for all the possible boundary conditions. This would lead to ascheme that can be easily extended to other models with
lower value ofM,; and to a greater value &, ,, reducing  nonlocal dynamics, like invasion percolati¢h5] and the

the discrepancy with numerical values. Nevertheless, thguenched dielectric breakdown mod&6].

Mi,i:Mﬁ?(l_POHMic,leo: ©)

where M?P and ME! are the FST matrix elements, respec-
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